Amorphing downwind-aligned rotor concept based on a 13-MW wind turbine
نویسندگان
چکیده
To alleviate the mass-scaling issues associated with conventional upwind rotors of extreme-scale wind turbines (≥10MW), a morphing downwind-aligned rotor (MoDaR) concept is proposed herein. The concept employs a downwind rotor with blades whose elements are stiff (no intentional flexibility) but with hub-joints that can be unlocked to allow for momentfree downwind alignment. Aligning the combination of gravitational, centrifugal and thrust forces along the blade path reduces downwind cantilever loads, resulting in primarily tensile loading. For control simplicity, the blade curvature can be fixed with a single morphing degree of freedom using a near-hub joint for coning angle: 22° at rated conditions. The conventional baseline was set as the 13.2-MW Sandia 100-m all glass blade in a three-bladed upwind configuration. To quantify potential mass savings, a downwind load-aligning, two-bladed rotor was designed. Because of the reduced number of blades, the MoDaR concept had a favorable 33% mass reduction. The blade reduction and coning led to a reduction in rated power, but morphing increased energy capture at lower speeds such that both the MoDaR and conventional rotors have the same average power: 5.4MW. A finite element analysis showed that quasi-steady structural stresses could be reduced, over a range of operating wind speeds and azimuthal angles, despite the increases in loading per blade. However, the concept feasibility requires additional investigation of the mass, cost and complexity of the morphing hinge, the impact of unsteady aeroelastic influence because of turbulence and off-design conditions, along with system-level Levelized Cost of Energy analysis. Copyright © 2015 John Wiley & Sons, Ltd.
منابع مشابه
Impact of flow inclination on downwind turbine loads and power
Wind turbines frequently operate under situations of pronounced flow inclinations, such as in complex terrain. In the present work the performance and rotor thrust of downwind and upwind turbines in upward and downward flow inclinations are experimentally investigated. In an upward flow inclination of +13°, downwind turbines are shown to have a 29% larger power output than a corresponding upwin...
متن کاملA Novel Wind Turbine Concept Based on an Electromagnetic Coupler and the Study of Its Fault Ride-through Capability
This paper presents a novel type of variable speed wind turbine with a new drive train different from the variable speed wind turbine commonly used nowadays. In this concept, a synchronous generator is directly coupled with the grid, therefore, the wind turbine transient overload capability and grid voltage support capability can be significantly improved. An electromagnetic coupling speed regu...
متن کاملExperiments on Fairing Design for a Wind Turbine Tower
An aerodynamic fairing can reduce the effects of the wind turbine tower wake on the blades of a downwind rotor. Previous studies on fairing design have focused on idealized conditions and time-averaged drag reductions, whereas this is the first study to obtain and analyze unsteady velocity field data in the wake of minimum drag fairings at non-zero angles of attack, specifically designed for wi...
متن کاملWind tunnel tests of a free yawing downwind wind turbine
This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible blades are mounted. The to...
متن کاملQuantifying error of lidar and sodar Doppler beam swinging measurements of wind turbine wakes using computational fluid dynamics
Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as wind energy and air quality. Lidar wind profilers exploit the Doppler shift of laser light backscattered from particulates carried by the wind to measure a line-of-sight (LOS) velocity. The Doppler beam swinging (DBS) technique, used by many commercial systems, considers measurements of this L...
متن کامل